

東京海洋大学 庄司 るり

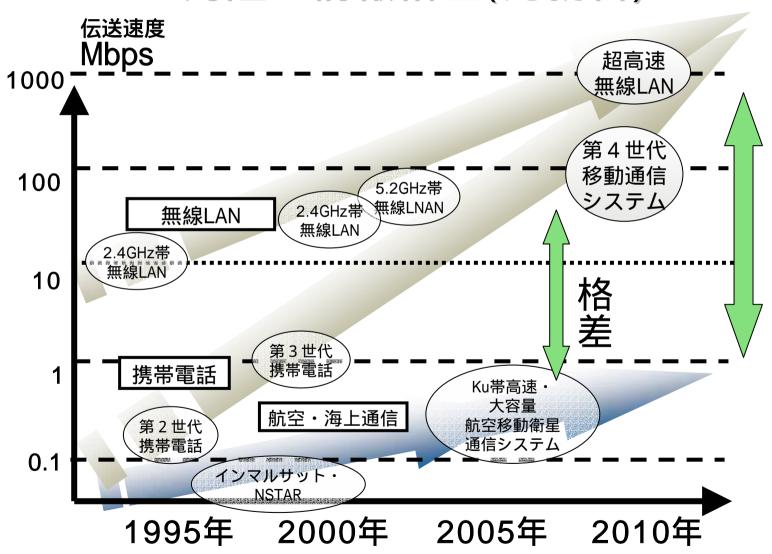
本研究の位置付け

運航管理に関する研究

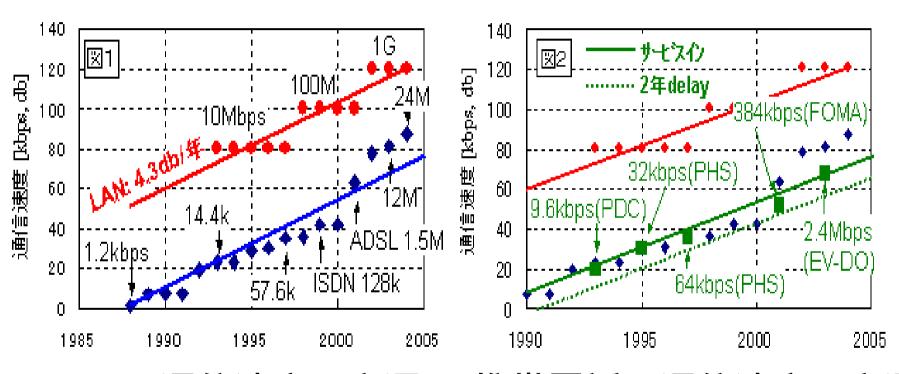
実用化(実運用)されていない

- 日本造船研究協会SR233
 - 「船舶の高度モニタリングの基礎研究」平成8年
- 日本造船研究協会SR240

「新しいフリートサポートシステム」平成11年


日本舶用工業会

「高度船舶安全管理システム構築」平成13年


本研究における運航管理 実用化 = 実船で運用

有効性を実証

無線通信システムの発展の流れ海陸の情報格差(総務省)

陸上における通信速度の変遷

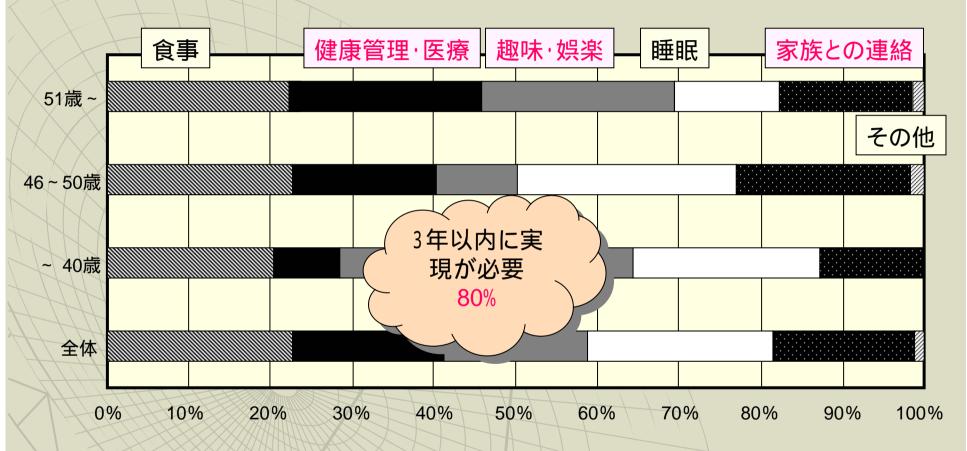
LANの通信速度の変遷

携帯電話の通信速度の変遷

外航海運

- ◆ 海運市況の好転
 - 今後5年間で900隻以上の日本支配船舶の建造
- ◆ 海運の空洞化
 - 乗り組み員の少人数化
 - グローバル化(便宜置籍船化、船員の混乗化)
- ◆ 船舶のフリート管理 オーナ会社とオペレータ会社の分離化
 - 運航管理の別会社化、シンガポール、インドネシア、インド等
 - 情報通信は不可欠
 - ◆ 大手海運における通信費の増大は年20%、今後も増加
 - ◆ ドキュメント管理、表、図、写真の送受、インターネットからの情報収集
- ◆ 船上における通信
 - インマルB (9600bps)、インマルF (64Kbps)
 - 陸上との通信速度の格差:100,000倍
- ◆ 福利·厚生面での陸上からの報提供による船内生活の充実
 - インターネットの無い職場
 - TV受信など娯楽面

内航海運


深刻な問題 船員不足 船員の高齢化 海技伝承の困難性 出入港作業が多い 航海業務の負担が大きい 沿岸航海 見張り業務、避航、変針作業等 運航要員が少ない(平均5人) 特に機関部

外航船より陸上からの支援要求は大きい 陸上支援の必要な領域が広い 支援要求の<u>緊急性が高い</u> 福利・厚生面への要求が大きい

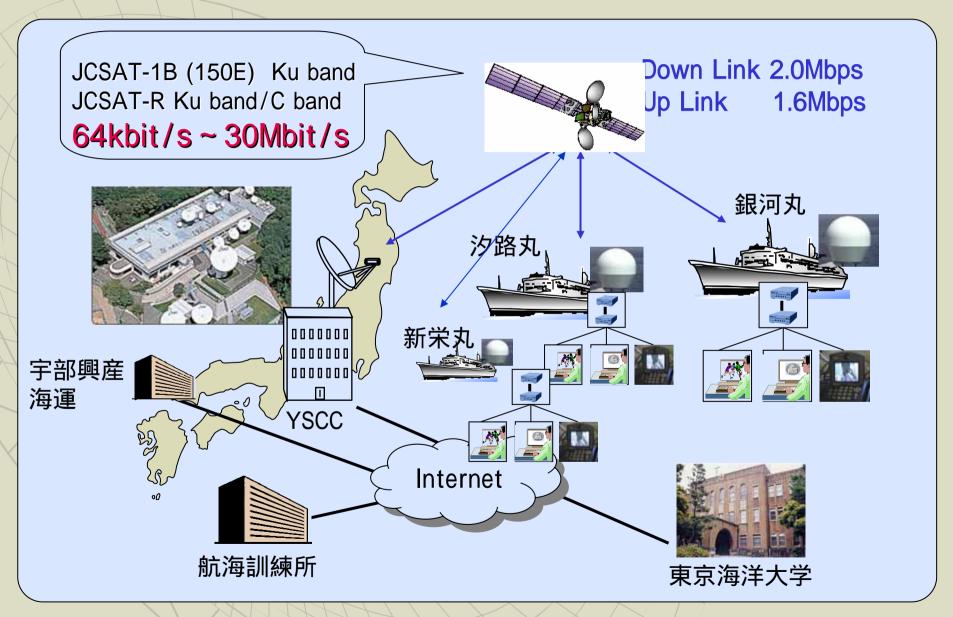
船舶の運航形態の変化

世代	船舶から 見た運航の 主体性	運航の 独立性	よ〈見られる 時期
第1世代	自律的	自立的	過去
第2世代	自律· 他律的	自立· 依存的	近過去 ¹ 現在 ¹ 近未来
第3世代	他律的	依存的	将来

船員の船内生活に関するアンケート調査

内航船員の船内生活環境改善のためのアンケート調査結果 海事再生委員会実施(2004年7月~10月)

- ◆ 陸上支援
 - 陸上支援を要する分野は多い
 - 高速・大容量化が待たれていた
 - 通信手段の貧弱さがボトルネック
 - インフラとして通信手段を整備する必要


船陸間通信による海陸協調運航(情報の共有)

内航船に 焦点をあてる

乗組員の負担を減らす

海洋ブロードバンドプロジェクトの開始

海洋ブロードバンドネットワーク概念図

海洋ブロードバンドネットワークのサービス内容1

分野	項目	主な情報形態	内 容
福利・	船員福利	画像・データ	TV電話、メールなど
厚生	遠隔医療	画像・データ	船内患者の治療指導
1	娯楽・イン ターネット	画像・データ	衛星TV,スカパーなど
安全運航	船外監視	画像	カメラの遠隔操作による船外監視、見張り
2	船内監視	画像	カメラの遠隔監視による船内状況の把握
運航管理	船体 モニタリング	データ	船体応力、姿勢などのリアルタイム監視、 記録、解析
2	機関 モニタリング	データ	主機関状態のリアルタイム監視、記録、 解析
	貨物 モニタリング	データ	貨物の状態監視
航行支援	気象・海象	データ	ひまわり等の海、気象情報入手(波浪、気 象情報)
2	ウェザー ルーティング	データ	推薦航路などの提供
	航路情報	データ	海上交通レーダ情報、港内状況情報

海洋ブロードバンドネットワークのサービス内容2

	分野	項目	主な情報形態	内 容
X	航路誘導	指定航路追従	画像・データ	見張りと情報と組み合わせた針路、速力制御、衝突回避
/	4	港内操船 (離着桟など)	画像・データ	針路、速力のリアルタイム情報による 制御による
\	船舶管理	故障管理	データ	全フリートの故障データ管理、解析
1	3	故障診断	画像	故障対策
1	3	パフォーマンス 管理	データ	船舶性能、管理
	危機管理	海難通報	画像、データ、 音声	海難発生時の状況監視
X	3	損傷制御・監視	画像、音声	損傷箇所の状況監視と対策
	情報提供	海洋汚染情報	画像	周辺海域の汚染状況
	3	海洋気象情報	データ通信	気象、海象、潮流通報による地球環境 予測への貢献

福利·厚生

ブロードバンド環境の実現

ドラスティックな環境変化

インターネット環境の充実 鮮明な画像を利用した**遠隔治療** BS、CSなどの娯楽 家族の情報や世界中の情報を得ること

陸上と同じ環境 = 生活環境の高度化

船員不足解消

内航船の運航管理

船内の協調型の運航体制 経験の積み上げ

陸上の船舶管理側

ブロードバンド通信で収集した大量の リアルタイムデータをダイナミックに使用

海陸協調型の学習型、予測型の運航管理手法を構築

統計的管理手法

得られたデータを用いて、因果関係を示す統計モデルの自動作成 現在の状態をモデルとして特徴づけ、逐次的に時間更新しながら予測精度を高める

データの同化、埋め込み

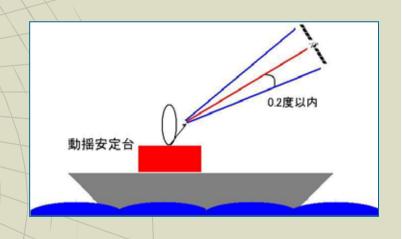
決定論的な知見について、リアルタイムに得られる時々刻々のデータを埋め込み あるいは同化させ、船体の運航状態を精度良く予測する

データの共有 (リアルタイム性)

船側

- ·基本統計量(データの特性値)のデータベース化と表示 平均値、分散、歪み度、尖り度等 + 時間履歴、環境値
- ・基本統計量を陸上に伝送 伝送するデータ量の軽減

陸上

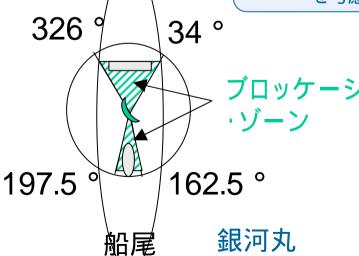

·蓄積されたデータ特性値から**船舶運航管理に必要な基本的資料** を自動抽出

平均速力と平均燃料消費量の関係、シーマージンの算出、経年変化、季節変化、汚損影響など

- ·一定時間経過後、適当な間隔で解析(自動的or運航管理者)
- ・静的データの変動や複数の変量データ間の関係を探り出す解析
- ·解析結果のデータベース化と船舶への提供 自動的 and 統計管理者によって行った結果

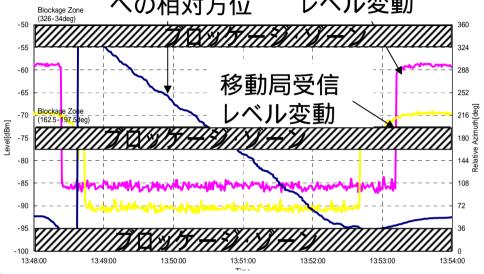
海洋ブロードバンドネットワークの構築

- ◆海洋ブロードバンドネットワークシステムの構築
 - Kuバンド: 雨などによる減衰が比較的少ない (12GHz~14GHz)
- ◆ アンテナの性能確認
 - Invsat、SeaTel、NTT Com製
 - 送信の精度 ± 0.2deg 以内
 - 操船実験(旋回角速度 < 2deg/sec)
 - 海域調査 橋梁の影響
 - インターロック機能の追加
 - ブロッキング・ゾーンの確認
 - ◆ アンテナ搭載位置と航路
 - 汐路丸、銀河丸、新栄丸で実験
 - 通信速度確認
 - 実用可能

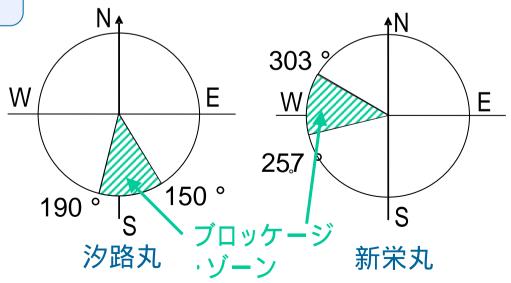


ブロッケージ・ゾーン

船体構造物が電波の送受信に 影響を与える範囲



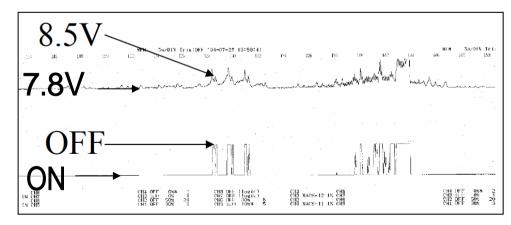
アンテナ設置位置の検 討船体構造物·航路等 を考慮



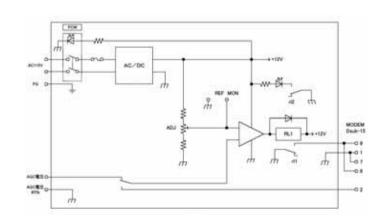
船首

船首から衛星 への相対方位 移動局送信 レベル変動

右旋回試験 舵角35°

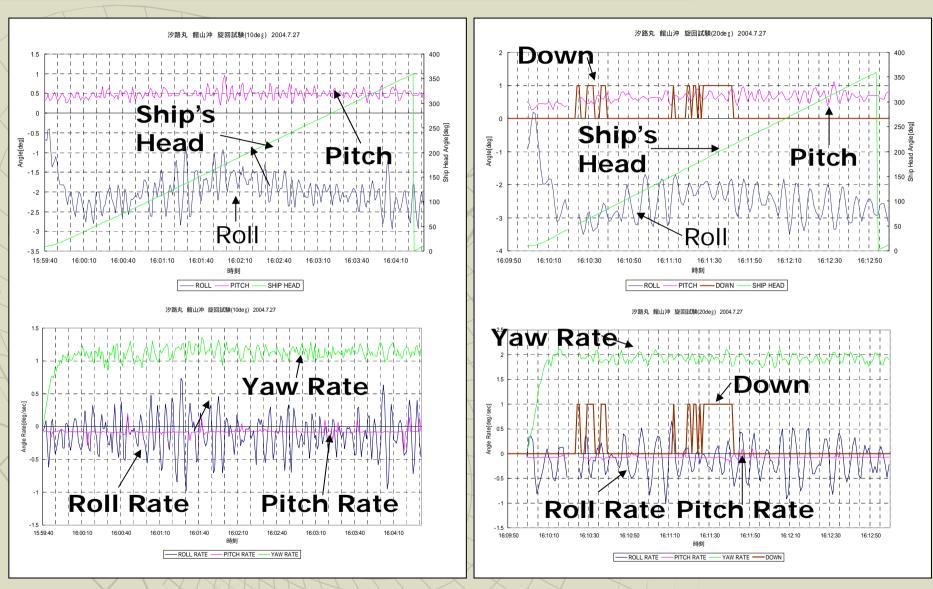

インターロック機能

橋下通過時 船体運動 (Yaw Rate大) 受信レベルの低下 衛星の捕捉・追尾 の精度低下 電圧レベルで0.7V低下


送信ビームが逸れ他衛星に送信

インターロック機能追加

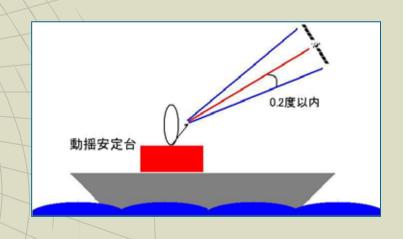
受信レベルがある一定値を 下回った場合自動的に送信を停波 インヒビット・ボックス追加



インヒビット・ボックス回路図

操船状況と受信レベルの変化

(2004.7.27実施)

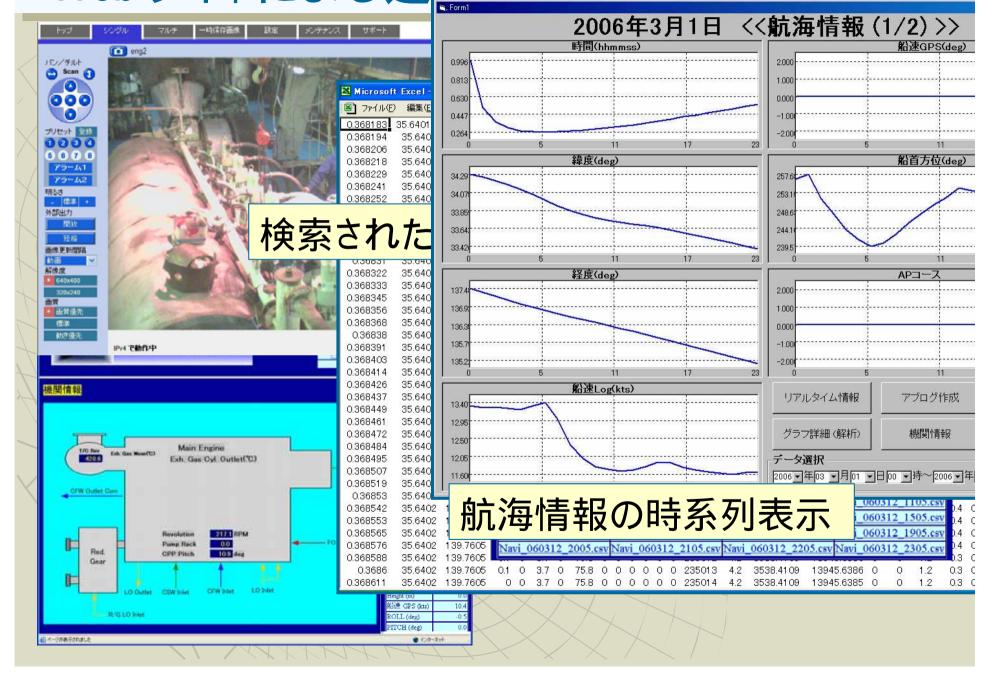


旋回試験 舵角10°

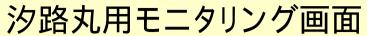
旋回試験 舵角20°

海洋ブロードバンドネットワークの構築

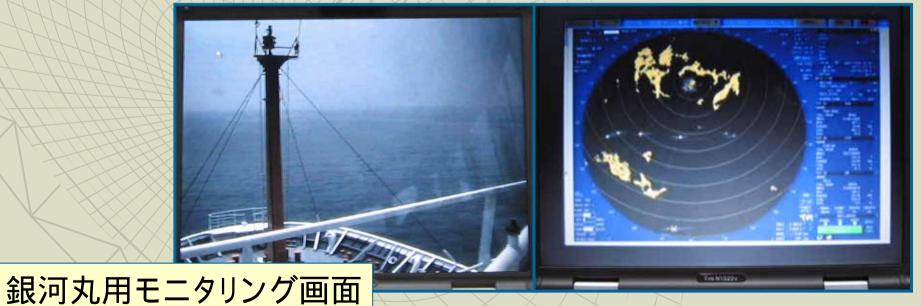
- ◆海洋ブロードバンドネットワークシステムの構築
 - Kuバンド:雨などによる減衰が比較的少ない (12GHz~14GHz)
- ◆ アンテナの性能確認
 - Invsat、SeaTel、NTT Com製
 - 送信の精度 ± 0.2deg以内
 - 操船実験(旋回角速度 < 2deg/sec)
 - 海域調査 橋梁の影響
 - インターロック機能の追加
 - ブロッキング・ゾーンの確認
 - ◆ アンテナ搭載位置と航路
 - 汐路丸、銀河丸、新栄丸で実験
 - 通信速度確認
 - 実用可能



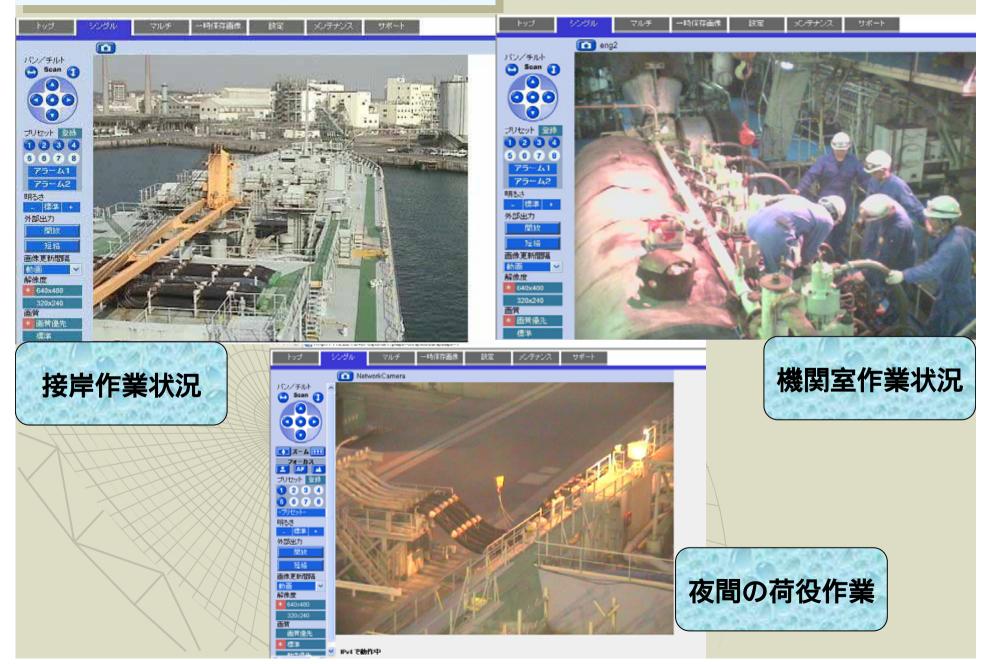
Webサイトによる運航管理



● 108-316


Webサイトによる運<u>航管理</u>

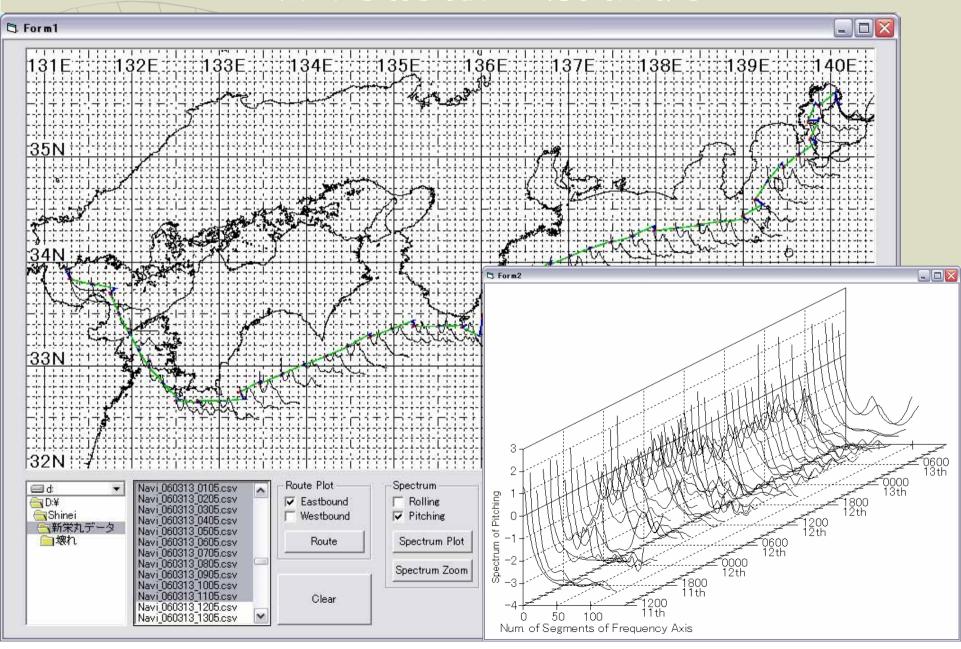
モニタリング



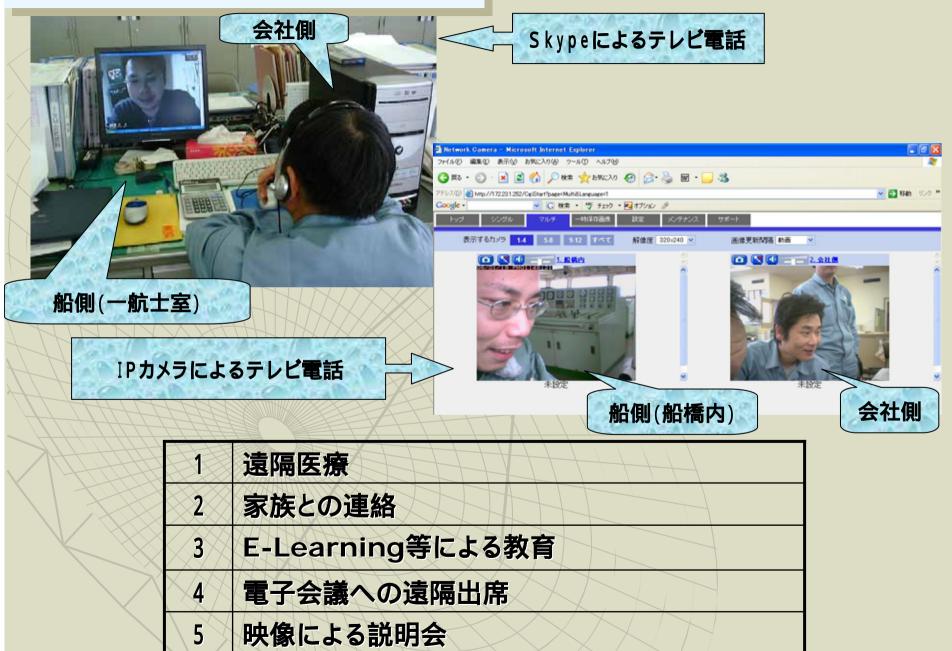
ライブ映像(作業中)

ウェアラブルカメラ (リモートメンテナンス)

ウェアラブルカメラによる離れた場 所の映像と連絡


1,海難・機器故障などの緊急時

現場映像による報告により、詳細が判断しやすく支援対応も早くなる。


2,負傷災害時の遠隔医療

素早い応急処置により被害を最小限度に留める事も可能。

航海情報の解析例

テレビ電話

社内アンケート結果(インターネット可能前)

船内でインターネットが利用出来れば、どのような情報を必要としますか?

X		回答者総数 25名(複数回答可能として)	回答者数	%
/	船長	気象関連(台風情報・地域別天候と波浪)	20名	80%
1		航路情報関連(狭水道での大型船情報)	18名	7 2 %
1	一航士	漁業情報(定置網などの情報)	10名	40%
1	Att.	機械情報(故障事例)	3名	12%
1		回答者総数 24名(複数回答可能として)	回答者数	%
			1757	7 1 0/
1		機械情報(故障事例·最新機器情報)	17名	7 1 %
X	機関長		7名	2 9 %
	機関長一機士			
		気象関連(海象・潮流) 船級情報(NKテクニカルインフォメーション・NK-SHIPS	7名	2 9 %

その他の意見|海難情報・ニュース・旅行・健康に関する事柄

社内アンケート結果(インターネット可能後)

インターネットでどのような情報が役だっていますか?

運航の手助けとして

水路通報&海図の補正·東京マーチス巨大船情報 海上気象·海難情報·NK-SHIPS·故障事例集

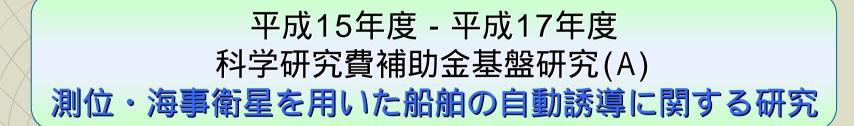
福利厚生として(趣味として)

ヤフーファイナンスで市場の調査(株式など)

iTunesで音楽や映像のダウンロード

ウィルス定義ファイルの更新

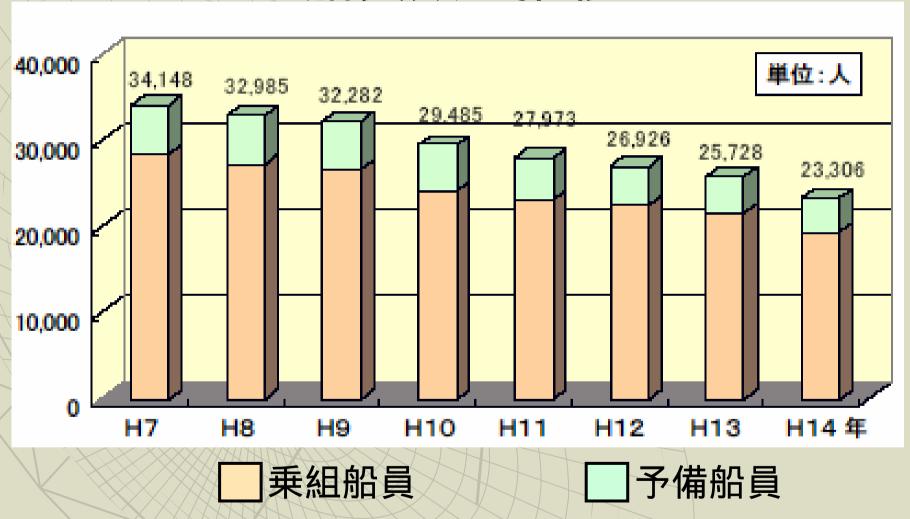
その他 旅の宿案内·車選び·競馬パチンコなどの情報 乗換案内(乗下船用) 等々


まとめ

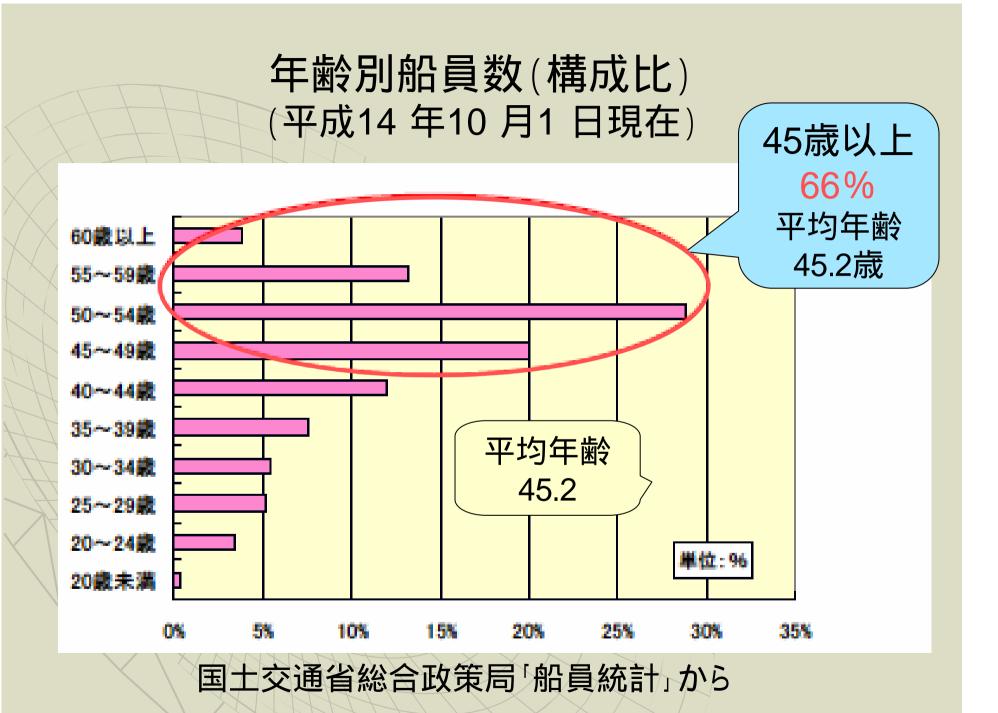
- ◆ 海上における通信環境 悪い
- ◆ 外航海運と内航海運 内航海運の問題
- ◆ 運航管理の形態の変遷 第2世代から第3世代へ
- ◆ 問題解決のため 高速大容量通信の必要性
- ◆ 新しい形の運航管理の提案海陸協調型の学習型、予測型の運航管理手法
- ◆ 海洋ブロードバンドプロジェクト 開始
- ◆ 実船を用いた実験 実運用における検証
- ◆ 運航管理例 Webサイトを利用した運航管理例

今後の展望

- ◆ 海陸協調型の運航管理を目指して
 - 運航管理用ポータルサイト
 - 大学として行えること
 - ◆各船舶から収集した情報を加工して、外部へ提供
 - ◆民間では出来ない
 - ◆東京湾リモートレーダネットワークの情報
 - ◆運航管理
 - セキュリティの高い情報提供
 - 船舶からのデータの統計処理と解析手法

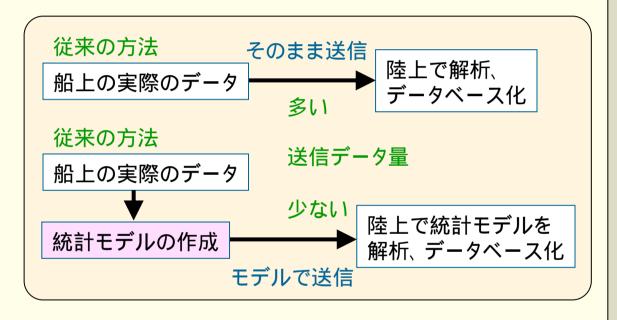


三井造船昭島研究所、NTTコミュニケーションズ、 第一電気、JSATおよび宇部興産海運との共同研究


ある国内大手海運会社の年間通信費

船種	通信料(年間、US\$)
コンテナ船	22,000
自動車船	25,000
バルカー	17,000
タンカー	30,000~40,000

船員数の推移


国土交通省総合政策局「船員統計」から

動的データ(時系列データ)のモデル化とデータベース化

船舶からの情報:時系列モデルとしてパラメトリックに記憶

- ・自己回帰モデル
- ・トレンドモデル
- ・非線形モデル
- ・欠測値モデル
- ・異常値判定モデル等々

気象・海象予測精度の向上へ寄与

大気の運動方程式用いたシミュレーション結果に、多くの観測点からのデータを同化させることにより、予測精度の向上が期待出来るウエザールーティングの精度向上