2012年電波航法研究会

津波に対するレーダ観測活動の 調査(その2)

平成24年9月7日 元日本工業大学 渡辺康夫

調査(その2)の構成

- 1. はじめに
- 2. 衛星搭載マイクロ波電波高度計の津波観測
 東北太平洋沖地震津波:merging tsunami
- 3. HFレーダの津波観測

東北太平洋沖津波: tsunami signal

4. 津波探知のためのスペースセンサ

GNSS-Rを応用した津波探知技術等

5. おわりに

論文等資料

Fig. 1 2004 Indian Ocean Tsunami

Fig. 2 Sea Surface Height Anomalies: Data by Jason-1 and Model Gower, Int. J. Remo

Sens, 2007

Solid: corrected sea surface height: (1) 4.56S: h=70cm-(30-40)cm, peak-to-peak 1m. (2)13.15N: h=-20cm. (3) v=739km/h for av. depth=4300m.

Dotted: sine wave model with λ =580km, v=739km/h, h=0.6m.

Fig. 4 Japan Tsunami, 11 March 2011

http://nctr.pmel.noaa.gov/

Fig. 5 Merging Tsunami, March 11, 2011

160°E 180°W 160°W 140°W

140°E

- a) ENVISAT at 5:25 after quake
- b) Jason-1 at 7:30 after
- c) Jason-2 at 8:20 after
- d) Tsunami model (black) and ENVISAT data
- e) Jason-1 over Mid-Pacific Mt. Merging tsunami (red arrow)
- f) Jason-2 dáta

Black arrows: locations of merging tsunamis

> Song, Geo Res Lett, 2012

Fig. 7 Max. Amplitude of the 26 Dec. 2004 Tsunami Modelled by Titov et al.

Fig. 8 GPS-measured Land Displacement and the Derived Seafloor Displacement

(a) Horizontal

Song et al., Geo Res lett, 2012

Fig. 9 Tsunami Height Superimposed on Total Current Velocity Field Measured by Radars at Usujiri and Kinaoshi

(L) Tsunami sweeping in, 15:53 JST. (R) sweeping out, 21:00 JST. Blue dot: Usujiri, Red dot: Kinaoshi. v_0 /div: 40cm/s. h: color code.

Lipa et al., Remote Sensing, 3 Aug. 2011

Fig. 10 Radial Current Velocities from Usujiri Radar

Lipa et al., Remote Sensing, 2012

Fig. 11 Velocity Components from Kinaoshi Radar and q-factor

Fig. 12 Overall System with PARIS Concept

PARIS: Passive Reflectometry and Interferometry System

Martin-Neira, ESA Journal, 17, 1993

Fig. 13 Tsunami Warning Study based on GNSS-R LEO Constellation

GPS Occultation, Reflectometry and Scatterometry Receiver

GNSS-R Reflection Points Track (blue) at CHAMP-like LEO orbit

GNSS-R: Global Navigation Satellite System Reflectometry LEO: Low Earth Orbit GITEWS GPS Technology, March 2012 GITEWS: German Indonesia Tsunami Early Warning System

Ruffini, IEEE Geo Remo Sens Soc Newsletter, 2006

Fig. 16 PARIS: Iso-Doppler Lines **Iso-Doppler Lines** R х ũ_p, Earth $\vec{v}_r \bullet \vec{u}_{rp} = k_D$

Martin-Neira, ESA Journal, 17, 1993

Direct and reflected waveform produced by cross-correlation with clean replica

Ruffini, IEEE Geo Remo Sens Soc Newsletter, 2006

Fig. 18 Delay/Doppler Waveform

Lowe, IEEE Geo. Remo Sens, 2002

Fig. 19 Data Collection with UK-DMC Satellite March 12, 2004

UK-DMC: United Kingdom's Disaster Monitoring Constellation

Gleason, et al., IEEE Geo Rem Sens, 2005

Gleason, et al., IEEE Trans. Geo Remo Sens, 2005

Fig. 21 Delay-Doppler Map of Ocean Reflected Signal of GPS

Coherent Integration:1ms

Incoherent Summation:1s

Gleason, et al., IEEE Trans. Geo Remo Sens, 2005

Fig. 22 PARIS-Aircraft Test at H1000m over Palamos Canyon

PARIS-Alpha aircraft test

PARIS-Gamma aircraft test

Fig. 23 Tsunami Detection Using GNSS Reflectometry Stosius, Adv Spa Res, 2011

Fig. 24 PARIS-IoD Concept

Martin-Neira, IEEE Geo Rem Sens, 2011

Table 1Estimated Performance:IoD and Operational Mission

	IOD	Operational
Parameter	Height Accuracy on 100km, G=23dBi, h=800km	Height Accuracy on 100km, G=30dBi h=1500km
Instrument Noise and Speckle	12.5 cm	4.2 cm
lonosphere	9.7 cm (2 frequencies)	4.8 cm (3 frequencies)
Troposphere (Wet and Dry)	5 cm	2 cm
Electromagnetic Bias	2 cm	2 cm
Skewness Bias	2 cm	2 cm
Orbit	5 cm	2 cm
Total RMS Height Accuracy	17 cm (13 cm at nadir)	7.5 cm (5 cm at nadir)

おわりに 3/11津波のレーダ観測 merging tsunami tsunami signal スペースセンサの研究 GNSS-Reflectometry 今後の調査 ・津波の観測報告 ・津波レーダの研究動向 ・津波の早期警戒システムへの取り組み