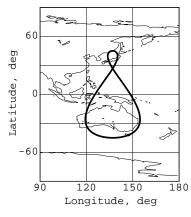
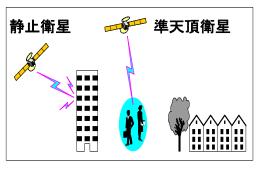
高速移動体向け 高精度測位補正技術に関する研究開発 (その3)

平成20年11月28日 電子航法研究所

準天頂衛星システムについて

内容


- 準天頂衛星システムについて
- 電子航法研究所における研究開発の状況 研究開発の概要 これまでに得られた成果 今後の計画


- 4

GPSの利用と問題点

- ・ GPSによる測位の利用 カーナビゲーション、測量・測地
- ·GPS利用の問題点
 - (1)山岳や都市部のビルの影響
 - →信号を受信できない
 - →測位できない
 - (2)鉄道、高速道路を走る自動車
 - →GPSによる測位精度は不十分

準天頂衛星 QZS: Quasi Zenith Satellite

天頂方向に見える衛星

地上軌跡の例

5

準天頂衛星システムの概要

- ・ 準天頂衛星システム (QZSS: Quasi Zenith Satellite System)
 - (1)準天頂衛星を複数個組み合わせて、特定の地域の天頂 付近に常に1個以上存在するように軌道配置したもの
 - (2)通信、測位での利用が可能
- ·特徵
 - (1)サービスエリアの天頂付近に少なくとも1個の衛星が見える
 - (2)建物などによる電波の遮蔽が少ない
 - (3)100%に近い割合でサービスエリアをカバーできる
 - (4)高品質な移動体データ通信や放送、測位が可能
 - (5)サービスエリア:日本列島およびその周辺
- 利用例

列車の運行管理、自動車・歩行者の航法、捜索救難システム

6

準天頂衛星計画

2003~

官民連携プログラム 民:移動体通信事業・放送事業、測位補強事業

官:衛星測位に関する研究開発

2006.3: 測位・地理情報システム等推進会議→計画見直し

◆第1段階:国主体のプロジェクト

1号機:測位単独、2010打上

技術実証(文部科学省、総務省、経済産業省、国土交通省)

利用実証(民間)

- ◆第2段階:官民合同プロジェクト
 - 2,3号機←技術実証・利用実証の結果の評価 システム実証(官民),事業化判断

関係各省・民間の関係

準天頂衛星外観(予想図)

(宇宙航空研究開発機構殿提供)

大きさ: 2.9m(D) × 25.3m(W) × 6.0(H)

発生電力:5300W以上

電子航法研究所における 研究開発の状況

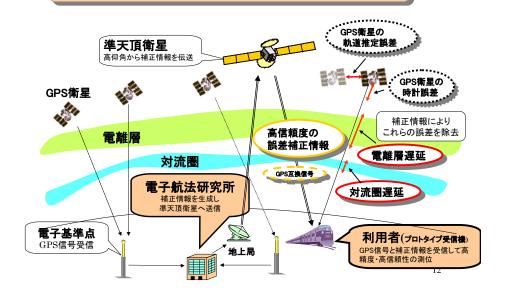
研究開発の概要

10

研究開発の目的と特徴

<u>準天頂衛星を用いる高精度測位補正技術</u> (高精度・高信頼性の測位補正方式の開発)

- 位置付け: 国土交通省からの委託
- 目的


L1-SAIF. LEX

鉄道などの高速移動体の安全性向上に寄与する 高精度測位補正システムの実現

- 特徴
 - ①高精度:目標測位精度は1メートル程度
 - ②高信頼性:利用者が安心して使えるシステム
 - ③SBAS方式に基づいて開発
 - ④L1-SAIF信号の利用

高精度測位補正実験システム概念図

サブメータ級測位精度/信頼性の確保

システム概要

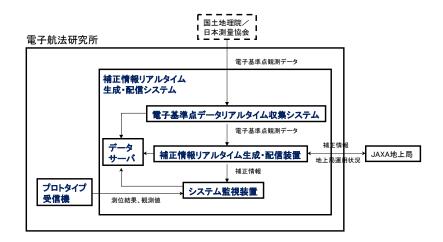
- ①測位精度向上·信頼性確保に必要な 補正情報を電子基準点観測データ から生成
- ②L1-SAIF信号(補正情報+測距)を 準天頂衛星経由で放送
- ③使用周波数: GPS L1(1575.42MHz)
- ④補正情報伝送速度: 250bps
- ⑤補正情報を分割して配信

年次計画

平成15年度	平成16年度	平成17年度	平成18年度	平成19年度	平成20年度	平成21年度	平成22年度
(補正情報生	· :成方式開発) ·	(高精度測位	・ 立補正実験シ ・	· ステム開発) ·	(評	' 価 試	験)
方式調査・ 検討	方式評価		リアルタイム システム開発		総合試験	技術事	証実験
評価用ソフリー 作成		プ마	-タイプ受信機	開発			
							準天頂衛星 打上げ

研究項目

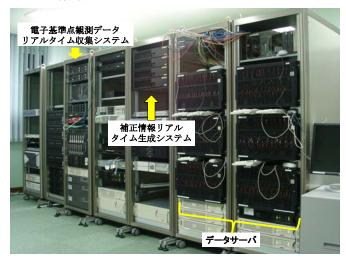
- ①補正情報リアルタイム生成・配信 システム開発
 - (1)完全性監視方式開発(信頼性確保)
 - (2)伝搬遅延推定方式開発(誤差減少)
 - (3)補正情報生成·配信方式開発
- ②プロトタイプ受信機開発
- ③評価試験実施


電子航法研究所における 研究開発の状況

これまでに得られた成果

平成19年度までの成果

- ①補正情報リアルタイム生成・配信システムの開発・単体評価
- ②プロトタイプ受信機の開発・単体評価

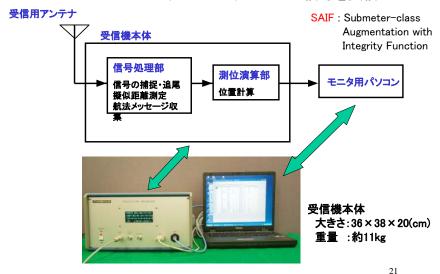

補正情報リアルタイム生成・配信システム構成

1

補正情報リアルタイム生成・配信システム外観

17

補正情報リアルタイム生成・配信システム 評価試験


- ①補正情報リアルタイム生成・配信機能確認
- ②補正情報による測位精度向上· 完全性監視機能確認

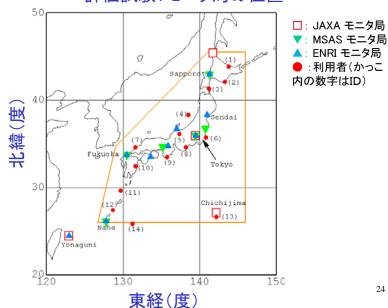
19

18

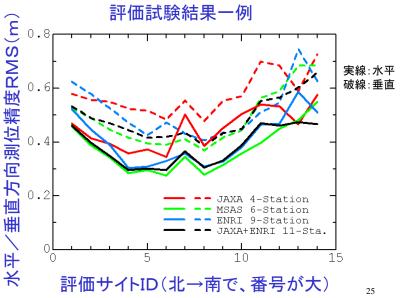
プロトタイプ受信機構成図及び外観図

:L1 C/A、L1-SAIF、L1-SBAS信号を受信

プロトタイプ受信機評価試験


- ①模擬準天頂衛星信号受信機能確認
- ②模擬準天頂衛星信号中の補正情報の 受信・解読機能確認
- ③補正情報を利用した測位計算機能確認

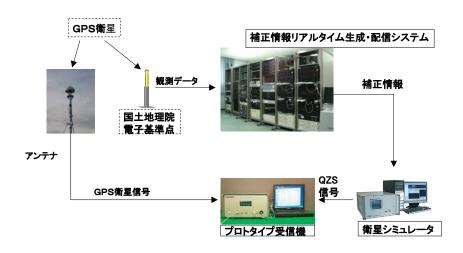
22


電子航法研究所における研究開発の状況

これまでに得られた成果 (評価試験結果例)

評価試験:モニタ局の位置

補正情報リアルタイム生成・配信システム 評価試験結果一例


今後の計画

- ·平成20~22年度
 - (1)地上での総合試験
 - (2)実衛星による技術実証実験

26

28

平成20年度実施内容: 地上での総合試験

まとめ

- 準天頂衛星システム概要
- 電子航法研究所における研究開発の状況

国土交通省からの委託開発

研究開発の概要:L1-SAIF信号 これまでに得られた成果 今後の計画

